
For permission to copy or republish, contact the American Institute for Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024

AIAA'92

AIAA 92-1191
Design Sheet: An Environment for Facilitating
Flexible Trade Studies During Conceptual Design

M. J. Buckley, K. W. Fertig, and D. E. Smith
Rockwell International Science Center
Palo Alto Laboratory, Palo Alto, CA 94301

1992 Aerospace Design Conference
February 3-6, 1992/Irvine, California

Copyright © 1992 by Rockwell International. Published by the American 1
Institute of Aeronautics and Astronautics, Inc. with permission

DESIGN SHEET: AN ENVIRONMENT FOR FACILITATING FLEXIBLE
TRADE STUDIES DURING CONCEPTUAL DESIGN

M. J. Buckley, K. W. Fertig, and D. E. Smith
Rockwell International Science Center, Palo Alto Laboratory

Palo Alto, CA 94301

Abstract

This paper summarizes the capabilities of Design Sheet, a
software program that facilitates trade studies during
conceptual design. Design Sheet permits the designer to
build a model for use in conceptual design by entering a set
of algebraic equations in a very flexible form. The designer
can then use Design Sheet to easily change the set of
independent variables in the algebraic model, and to rapidly
perform trade studies, optimization, and sensitivity
analyses. The basic mathematics and algorithms used in
Design Sheet are outlined. The functionality of Design
Sheet is illustrated first with a simple example, and then
with a more complex example involving initial aircraft
sizing. For realistic conceptual design problems, it is
argued that Design Sheet provides the capability to perform
trade studies with significantly increased flexibility and
efficiency.

I. Introduction

The development of complex systems such as aircraft re-
quires a sequence of engineering and management decisions
in which an overall design is sought which satisfies many
competing requirements. Tradeoff analyses are undertaken
to find design solutions that simultaneously satisfy multi-
ple performance requirements as well as manufacturability,
life-cycle cost and schedule constraints. In addition, the de-
sign team is challenged to produce a design that is robust
to unavoidable variations in the manufacturing processes
and to unanticipated variations in the use of the system.
The overall goal is to meet or exceed customer expecta-
tions. Because of these and other issues, there has been a
growing interest in Total Quality Management techniques
to improve the performance of the design team (King
[1989], Hauser & Clausing [1988]). While these
techniques are useful, they do not address engineering
analysis, which is the backbone of the product design
process.

While there is an extensive industry providing CAD tools,
these tools are generally not suitable for use in the
conceptual design phase. The conceptual design phase is
particularly important since the majority of the life-cycle
costs and overall quality of the system will be determined
in this phase (National Materials Advisory Board [1991]).
For an extremely wide range of domains such as aircraft
design, rocket engine design and communications systems
design, this engineering tradeoff process during conceptual
design is undertaken using fairly simple mathematical
models of the underlying phenomena. These models
typically take the form of sets of algebraic equations that
relate the parameters of the product being designed to
multiple engineering parameters, cost, etc. In the aircraft
industry for example, the initial sizing of the aircraft
involves several hundred variables together with a similar

number of equations. In various divisions of Rockwell
International, FORTRAN programs and spreadsheets have
traditionally been used to perform predefined trade studies in
the conceptual design of aircraft, rocket engines, and
communication systems. Although these programs and
spreadsheets perform important trade studies, they are very
inflexible. If the design team wants to perform a different
trade study, then either reprogramming is required or a new
spreadsheet must be written.

This paper describes Design Sheet, a system that
overcomes this limitation. Design Sheet allows the user
to input a set of algebraic equalities and inequalities and to
use these equations in almost arbitrary fashion to 1) find
the values of variables given other variables, 2) perform
trade studies, 3) do optimization, and 4) perform sensitivity
analysis. The user is free to dynamically change which
variables will be treated as independent. The system then
automatically determines which variables are dependent and
computes their values. The choice of independent variables
is limited only by the structure and degrees of freedom of
the algebraic constraints.

Section II of this paper describes the functionality of
Design Sheet in the context of a simple example. Section
III briefly describes the mathematics and algorithms
underlying this functionality. Section IV gives a more
complex example involving airplane sizing. A more
detailed description of the functionality, mathematics and
algorithms of Design Sheet is given in Fertig and Smith
[1991]. A user's manual is also in preparation
(Stubblefield and Fertig [1992]).

II. Design Sheet Functionality

Equations

In order to explain the workings of Design Sheet, we start
with an extremely simple example using equations
balancing the weight of an aircraft with its lift:

Ws = q CL (1)

q =
1
2 ρ v2 (2)

ρ = 0.00238 (3)

These equations relate the five parameters,

Ws Wing loading
q Dynamic pressure
CL Lift coefficient
v Velocity

ρ Air density

2

ρ

CL

v

Ws

q

ρ

CL

v

Ws

q

(5) (6)

Lift
Model

Lift
Model

ρ

CL

v

Ws

q

(4)

Lift
Modelρ

CL

v

Ws

q

(3)

Lift
Model

ρ

CL

v

Ws

q

(1)

Lift
Model ρ

CL

v

Ws

q

(2)

Lift
Model

Figure II.1. Six permutations of independent variables for
simple lift model.

In using these equations in a spreadsheet, we would have to
make choices about which equations to use for which
variables. We have no choice for equation (3); it must be
used to determine the density, which it does directly. We
are left with four variables and two equations; this implies
that we need to specify two independent variables and let
the system of equations determine the other two. We have
six possibilities:

Suppose the spreadsheet designer chooses case 5, with v
and CL as independent variables. He could then use
equation (2) to get q, and equation (1) to get Ws. If, later,
he wanted to vary Ws, and see the effect on CL, he would
have to either interpolate using tables he already
constructed, or re-write his spreadsheet for case (6).

Design Sheet avoids this rewrite step. It lets the user
specify equality (and inequality) constraints among
variables in almost arbitrary fashion, i.e.:

<some algebraic expression> =
<some other algebraic expression>,

<some algebraic expression> ≤
<some other algebraic expression>.

The user can read equations in from a file, or add them
incrementally while using the system.

Variables

Each equation relates some set of variables. In Design
Sheet, variables can be in one of three states: independent,
dependent, or undetermined. An independent variable is one
the user is free to change the value of. A dependent
variable is one that is derivable from the equation set and
the independent variables. An undetermined variable is not
derivable from the constraint set and the user has not
specified it as independent. The system keeps track of
which variables are dependent, which are independent, and
which are undetermined. The user is free to change an
undetermined variable to be independent at any time.
Conversely, he can change an independent variable back to
undetermined. Each time the user makes a change to the
state of a variable, or adds or removes an equation, Design
Sheet automatically determines and updates the status of all
other affected variables.

For any independent variable the user can supply, change,
or remove the value of that variable. When a value is
changed, Design Sheet automatically updates the values of
all other variables that depend on the independent variable.
This calculation is not always simple, since it may require
simultaneous solution of a system of equations.

Example

As a simple example, suppose that the three equations
above are entered into Design Sheet. The density, ρ, will
be dependent (determined by equation (3)), while Ws, q, v,
and CL will be undetermined. The state of the variables is
therefore:

Ws Wing loading Undetermined
q Dynamic

pressure
Undetermined

CL Lift coefficient Undetermined
v Velocity Undetermined

ρ Air density Dependent 0.00238

Suppose the user then specifies that the velocity, v, is
independent. As soon as he does so, the system determines
that it can use equation (2) to compute the dynamic
pressure, q, and thus marks that variable as dependent.
Wing loading, Ws, and lift coefficient, CL, remain

undetermined, and only density, ρ, has a value:

Ws Wing loading Undetermined
q Dynamic

pressure
Dependent

CL Lift coefficient Undetermined
v Velocity Independent

ρ Air density Dependent 0.00238

If the user then chooses lift coefficient, C L , as an

independent variable, the remaining undetermined variable,
Ws, becomes dependent:

Ws Wing loading Dependent

3

Click on Something Here, Get Information Here

Input value and Design Sheet Propagates It

Figure II.2. Lift Model with velocity and CL declared independent. One can specify numerical values for independent
variables and let Design Sheet determine the corresponding values for the dependent variables. One can
"inspect/browse" through the model with simple mouse clicks to get dependency information.

q Dynamic
pressure

Dependent

CL Lift coefficient Independent
v Velocity Independent

ρ Air density Dependent 0.00238

If the user then supplies a value of 1.2 for CL, and 50

for v, Design Sheet will compute values for the remaining
two independent variables, as shown below:

Ws Wing loading Dependent 10.2
q Dynamic

pressure
Dependent 8.49

CL Lift coefficient Independent 1.2
v Velocity Independent 50

ρ Air density Dependent 0.00238

Figure II.2 is a screen snapshot of Design Sheet for this
example. The equations for the example appear in the
lower right pane, while a variable table similar to those
used above appears in the lower left pane. Variable state
changes and value changes were accomplished by simple
point and click operations on the appropriate cell of the
variable pane.

Dependency Structure

With such a simple model, there is little room for
confusion. When the models are much larger, the user
needs help to determine why the system thinks a given
variable is in a given state. For example, he may want to
know what independent variables influence a dependent
variable or which equation is being used to derive that
variable. This kind of information is shown for dynamic
pressure, q, in the upper right pane of Figure II.2. This
information was obtained by a simple point and click
operation on the variable q.

With large sets of equations it may also be difficult to
determine why a given variable is not yet determined, i.e.
what variables must be declared independent in order to
cause that variable to become dependent. To help with this
problem we have developed the concept of variable-
equivalence. A set of undetermined variables are equivalent
if and only if declaring any one of them independent results
in the others becoming dependent. (It can be shown that
this is a legitimate equivalence relation from the properties
of constraint sets and the definition of dependency.) This
equivalence relation partitions the undetermined variables
into mutually exclusive classes so that it is easier to see
what things must be specified in order for a particular
variable to become determined.

To see how this concept applies, consider our simple
example when all four of the variables, Ws, q, CL, and v

4

Stall Velocity, knots

W
in

g
Lo

ad
in

g,
 (

lb
s/

ft^
2)

CL = 1.2

Cl = 1.1

CL = 1.0

Menu driven
dialog:
Creates a
trade table

Flip variable state
with mouse

Figure II.4. Simple mouse clicks are all that are necessary to change the structure of the dependencies. Here we show case (3)
of Figure II.1. We also show an example trade study presented as a table of values.

are undetermined. In this case the classes are:

{q, v} {CL} {Ws}.

The variables q and v occur in the same class because
making either one of them independent causes the other to
become determined. In contrast CL and Ws appear by

themselves, because no single variable can cause either of
them to become determined.

Interestingly enough the structure of a set of variable
equivalence classes changes once a variable is made
independent. In that case, some of the remaining
equivalence classes may collapse to form new, larger,
equivalence classes. In our example, once v is made
independent, q becomes dependent, and the remaining two
equivalence classes collapse into the single class:

{CL, Ws}.

This corresponds to the fact that there is only one degree of
freedom remaining in the system of equations.

In large systems, having this kind of information is
extremely useful for determining what variables must still
be specified, and for finding bugs in the set of equations.

Trade Studies

The major motivation behind creating the Design Sheet
environment was to allow designers to more flexibly
consider wider ranges of alternatives during design. This is
facilitated by making it as easy as possible to perform
different trade studies, where the designer wishes to see the
effects of varying one or more parameters on the values of
other parameters. As an example of Design Sheet's
support for this activity, consider Figure II.3. There we

show the user performing a simple trade study: plotting the
value of the wing loading parameter versus the independent
variable, velocity, for three separate values of the other
independent variable, CL.

In order to perform a trade study it is necessary for the user
to select the independent variables that he wants to vary,
supply ranges or values for those variables, and specify the
dependent variables that he is interested in seeing. This
information was supplied by simple point and click
operations on the variable table, and by a menu driven
dialog.

Figure II.3. Example Trade Study plotting wing loading
versus velocity for various values of the lift
coefficient.

The results of the trade study can be displayed in a number
of ways. Figure II.4 shows a table representation of the
data.

This was done for the case (3) of Figure II.1, in which CL
and WS are taken as the independent variables. Three-
dimensional plots and contour plots are also available. In

5

Section IV we show a more advanced example where the
user displays level contours of gross takeoff weight, while
superimposing the effects of inequality constraints on the
same graph.

Error Propagation

During the conceptual phases of design, the user is forced
by necessity to make estimates of various parameters based
on incomplete information. His models are often quite
approximate. All too often the errors associated with these
estimates are not explicitly determined or quantified.
Design Sheet has built in techniques to overcome this
difficulty.

As part of its solution of the constraint network, Design
Sheet is able to determine the jacobian of the vector of
dependent variables with respect to the vector of
independent variables. This jacobian can then be used to
perform a first order error analysis. In particular, if Σx is
the variance-covariance matrix of the independent variables,
denoted by the vector x, and J is jacobian of the
transformation from x to the dependent vector y, (i.e., Jij =
∂yi/∂xj), then the variance-covariance matrix of y is

Σy = J Σx JT

We have implemented this in Design Sheet. Currently we
only address the case where the user can assume that the

errors in his current set of independent variables are
uncorrelated (diagonal Σx). In such a case, Design Sheet
correctly propagates these errors though the network,
giving (correlated) errors for the dependent variables. We
have plans to use this capability to implement Taguchi
robust design methods for Design Sheet.

Constrained Optimization

Optimization is a major component of the design process.
The designer may be trying to maximize some performance
parameter like range, he may be trying to minimize cost,
maximize life, etc. He does this in the context of a set of
constraints placed on the design, e.g., the plane must be
able to cruise at x knots, it must be able to takeoff within
y feet, etc. A limited version of constrained optimization
is currently supported by Design Sheet. If a global
optimum exists, the system will search through the set of
inequality constraints to determine which should be the
active ones at the optimum. We are currently enhancing
this capability to deal with problems where there is no
unconstrained optimum.

Functional Features Summarized

We summarize the main features of Design Sheet in Table
II.1.

Table II.1. Major Features of Design Sheet

Feature Significance
Equality and Inequality
Constraints

Both inequality constraints and equality constraints are allowed by Design Sheet. It uses
the equality constraints for propagation of values. It uses the inequality constraints in
optimization and for display in trade studies.

Arbitrary Form for Constraints The ability to input equations in any form is quite convenient. The user does not have to
be concerned with the computational sequence. Rather, he can just input the equations in
their "natural" form". A simple example may be a weight ratio constraint, like Wf/Wo =
1.06(1 - Wx/Wo).

Incremental Addition and
Deletion of Constraints

The user can incrementally add or delete constraints. This provides flexibility in model
usage. For example, as the analysis becomes more detailed, the user inputs more refined
modelling constraints.

Dynamic Modification of
Dependencies

This is the big win with Design Sheet. The user is free to change which variables are
independent and which are determined. The system automatically keeps track of the
consequences of these choices and enforces consistency

Specify/Change Values of
Independent Variables

This is the usual spreadsheet capability. Values are propagated automatically through the
constraint network anytime the value of an independent variable changes.

Automatic Reduction and
Solution of Simultaneous
Systems

This, of course, is the major contribution that Design Sheet makes to the analysis
process in design. We want to allow the user to think of his set of constraints as a set of
relationships among his variables rather than as a computational sequence of operations.
The more successful we are at that, the more the designer can think about designing rather
than computation.

Dependency Structure The user is given support for "browsing" through his model. He can find out which
equations are being used, which independent variables influence a given dependent
variable, and what equation is used to compute a given variable.

Trade Studies Two- and three-dimensional plots, contour plots and general tables are all supported.
Error Propagation As part of its solution of the constraint network, Design Sheet is able to propagate error

information though the network, giving (correlated) errors for the dependent variables.

Constrained Optimization A limited version of constrained optimization is currently supported by Design Sheet.

Before we show Design Sheet for a more complicated
example, we describe some of its inner workings in the
next section.

6

Graph Construction

Equations

Determination

Decomposition

Plan Construction

Symbolic Math Processor

Graph Algorithms

Answers

Plan

Variable Values

Variable States

Figure III.1 The flow of Design Sheet

Ws

ρ

CL

v q

(a)

(b)

(c)

(a) Ws = qCL

(b) q = 1/2 ρv2

(c) ρ = 0.00238

Figure III.2 Bipartite graph of equations in Lift model.

III. Design Sheet Technology: A Brief Description

Design Sheet is able to use the equality constraints to
determine which variables are derivable from the declared
set of independent variables. More than that, it is able to
determine a computational sequence for evaluating the
values of those determined variables, given the values of
the independent variables. It does this by solving the non-
linear set of algebraic equations which make up the
constraint set. When possible, it uses symbolic methods;
when this fails, it resorts to numerical methods.

The key to making this solution method possible is a set
of algorithms within Design Sheet for decomposing the
constraint set into tractable subsets, solving these subsets
individually, and then combining these partial solutions
into a complete solution.
The basic flow of Design Sheet is depicted in Figure III.1.
As equations are added, the system builds up a graph
relating the equations and the variables they contain.

Graph manipulation algorithms are then used on this
representation to 1) figure out which variables are
determined, 2) decompose the system of equations into
tractable subsets, and 3) determine the sequence of algebraic
and numerical operations for deriving values of the
determined variables. This computational sequence, and the

values of the independent variables are then passed to a
symbolic mathematics processor to derive values for
dependent variables.

Equation Graphs

As equations are added, Design Sheet incrementally con-
structs a bipartite graph (two classes of nodes, with edges
only between members of different classes) relating the
equations and variables. Given the three lift equations from
Section 2, Design Sheet would construct the graph shown
in Figure III.2.

In this graph, variable nodes are ovals, equation nodes are
rectangles, and there is an edge between a variable node and
an equation node if and only if the variable appears in that
equation.

Determination

When an equation is added or a variable is declared
independent, Design Sheet must figure out which variables
have become determined. There are two steps to this
process: labeling and propagation.

A labeling is a partial directing of the graph such that:

1) Each equation is directed at exactly one
variable, (making it a committed variable.)

2) All other edges connected to a committed
variable are directed away from the variable.

3) All edges connected to an independent variable
are directed away from the variable.

Intuitively a labeling is a pairing of equations and variables
such that the equation could potentially be used to derive
that variable. Figure III.3 shows one of the six possible
labeling for the graph in Figure 3.2. (The other labeling
are those where equations a and b are directed at different
variables.)

Ws

ρ

CL

v q

(a)

(b)

(c)

(a) Ws = qCL

(b) q = 1/2 ρv2

(c) ρ = 0.00238

Figure III.3. One of six possible labeling of graph in Figure
III.2. Equation (a) is directed towards q and (b) is
directed towards v. q and v are not yet determined,
however, since they have undetermined ancestors.

Each time an equation is added or a variable is declared
independent, Design Sheet updates its current labeling. For

7

example, if we declare v as an independent variable then
equation (b) can no longer point at v. The only remaining
possibility is to allow equation (b) to point at q. Given
this fact, equation (a) can no longer point at q, and must be
changed to point at either Ws or CL. One of these two
remaining labeling is shown in Figure III.4. Labeling and
re-labeling are performed using an incremental bipartite
graph matching algorithm described in [Fertig & Smith].

Ws

ρ

CL

v q

(a)

(b)

(c)

(a) Ws = qCL

(b) q = 1/2 ρv2

(c) ρ = 0.00238

=> Independent Node

Figure III.4 Declaring v to be independent, causes a change
in the labeling. Now q is determined since its
ancestors are, but Ws is not yet determined.

Once (re)labeling has been accomplished, a propagation
technique is used to decide which variables are determined.
Of course, any independent variable is determined. In
addition any variable whose predecessors in the graph are
determined, is also determined. For the labeling in Figure
III.3, only one variable, ρ , is determined (it has no
predecessors). Once v is declared independent there are three
determined variables, ρ, v, and q. (q is determined since
both its predecessors, ρ, and v are determined.)

Both the labeling and propagation algorithms are (worst
case) linear in the number of variables and equations
present. In practice, these algorithms take only a fraction
of a second on systems containing over 100 equations.

Decomposition and Plan Construction

Once labeling and propagation have taken place Design
Sheet constructs a computational plan for computing the
values of determined variables. For our example, if Ws and
CL are declared independent, the labeled graph is shown in
Figure III.5

This labeling naturally decomposes the problem of solving
a 3x3 system of equations into the sequential steps

Use equation (a) to get q
Use equation (c) to get ρ
Use equation (b) to get v

Design Sheet finds this decomposition and builds the
resulting plan by topologically sorting the determined

Ws

ρ

CL

v q

(a)

(b)

(c)

=> Independent Node

Topological sort:
(a), q

(b), v

(c), ρ

Figure III.5. Directed bipartite graph showing
computational strategy when Ws and CL are
independent

portion of the labeled graph. It then passes this plan,
along with the appropriate values for the independent
variables, to a symbolic math processor to determine the
values of the dependent variables. If a symbolic solution
for a given equation cannot be found, Design Sheet will
then resort to numerical methods.

Strongly Connected Components

So far, we have considered only a very simple example of
determination and decomposition. Figure III.6 gives a
slightly more complicated set of weight equations, together
with one possible labeling for the corresponding equation
graph. This set of equations has the property that once R
and Sref are declared independent, the remaining seven
equations can be solved simultaneously for the remaining
variables. However, it is not possible to decompose this
set of equations into a sequential set of simple operations,
as with our previous example.

This characteristic is manifested in the equation graph by
the presence of directed cycles. More precisely, the
equations and (dependent) variables in the graph are part of
a strongly connected component (SCC). (Formally, a
SCC is a maximal subset of nodes in a directed graph such
that there is a path from every node in the set to every
other.)

The possibility of SCCs in an equation graph has no effect
on the labeling process for the graph. However, it does
complicate the process of deciding which variables are
determined. Operationally, this reduces to determining if,
for a given variable, either:

1) the variable is independent,
2) all of the variable's predecessors are determined,

or
3) the variable is part of a SCC and the predecessors

of the SCC are determined.

8

(a) We/Wo = 2.61* Wo
(-0.1) * (Wo/Sref)

(-0.05)

(b) Wo = Wf + We

(c) Wf/We = 1.06(1-Wx/Wo)

(d) WLO/Wo = 0.97

(e) Walt/WLO = 0.985

(f) Wx/Wec = 0.995

(g) Wec/Walt = Exp[-0.00043 R] We

Wo

Sref

Wf

WLO

Walt

Wx

R

(a)

(b)

(c)

(d)

(e)

Wec

(f)

(g)

Cycle

Cycle

Cycle

 Figure III.6 Simplified set of aircraft sizing equations for the
mission shown in Figure IV.1. When the range R and
the reference area, Sref, are treated as independent
parameters, the seven equations are sufficient to
solve for the remaining seven variables. We show
one of the possible labeling. Only three of the four
cycles in the graph are shown.

Here the predecessors of a SCC are those variables not in
the SCC that have edges directed into the SCC. In Figure
III.6, the two predecessors of the SCC are the independent
variables R and Sref. These are both determined, so the
variables in the SCC are determined (by simultaneous
solution of the equations in the component).

For a given variable, we can determine whether it is part of
a strongly connected component in time that is (worst case)
linear in the size of the graph. As a result, this addition to
the determination process does not adversely affect the
speed of Design Sheet.

Component Decomposition

The presence of SCCs also has an impact on the
decomposition and plan generation phases of Design Sheet.
As before, the plan for an equation graph is generated by
topologically sorting the labeled equation graph, however.
SCCs are treated as single meta-nodes in the graph. Thus,
a plan for an equation graph might look like:

Use equation 3 to get x
Solve SCC 1 to get w, u, and v
Use equation 5 to get z
Solve SCC 2 to get q and r
...

Design Sheet must also find a plan for simultaneously
solving each SCC. One could ask a general purpose
algebraic system solver to step in at this point and try and
solve the SCC either symbolically or numerically. Since
it is rare, in general, to finding symbolic solutions to
nonlinear systems of equations, one is typically forced to
solving them numerically. In choosing a numerical
approach for Design Sheet, we did not seek the most rapid
solution method, but rather the most robust. The
robustness of nonlinear equation solvers is strongly affected
by the dimensionality of the system being solved. Often,
it is orders of magnitude easier to solve serially two
problems of one equation, each in one unknown, rather
than two equations in two unknowns, in parallel. As a
consequence, it would be to our advantage if we could
further decompose the SCCs. It turns out that this is
usually possible by choosing an appropriate subset of
decomposing variables in the SCC. We illustrate with an
example. In Figure III.6, if Wo were known, Design Sheet
could sequentially compute values for We, WLO, Walt
Wec, and Wx. Having both We and Wx Design Sheet
could then determine Wf,. Using Wf, and We,, equation
(b) could be used to get a new value for Wo, The
computational steps in this process define a fixed point
problem: Wo = H(Wo), where H represents the process
just outlined. We are left trying to solve one fixed point
equation in one unknown rather that seven equations in
seven unknowns. The numerical algorithms will be
correspondingly much more robust.

Not all variables in a SCC are equally useful as
decomposing variables. For example, if Wf, were chosen
as a decomposing variable, no other variables could be
determined without choosing a second decomposing
variable.

Since the choice of SCC decomposing variables has
enormous impact on the convergence properties of
numerical iteration, Design Sheet searches to find a
minimal set of such variables for each SCC. The system
uses a heuristically guided branch and bound search
described in [Fertig and Smith]. In general, finding the
optimal decomposing variables for a simultaneous system
is NP-hard. As a result, the search algorithm is
exponential in the number of decomposing variables
required. However, in practice, the algorithm takes less
than a second to find optimal decomposing variable sets for
SCCs containing more than 40 equations. We therefore
expect that this process will not pose a bottleneck for large
applications.

Related Work

Bouchard[1988,e.g.] has created a design system which
allows the user to input directed constraints among his
design variables. The equations are solved numerically,
allowing for rapid production of trade studies. No
interactive facility is provided for changing which are the
independent variables. Nevertheless, a factor of ten increase
in turn around time is reported using this system on real
design problems.

9

Serrano[1987] has developed a set of algorithms using
bipartite matching and strong component identification for
solving systems of equations. Though no effort was given
to breaking down components, both logical and algebraic
constraints were considered. Further, he does not directly
address issues involved in incrementally adding and deleting
constraints.

Research in constraint-based reasoning has been going on
for some time. A reasonable account of this area is given
by Ward[1989]. Wilhelm[1991] provides a recent example
in the area of tolerance bound propagation and synthesis.
Navinchandra, Fox, and Gardener[1991] consider the issues
in user directed constraints. This is useful for constraints
implemented, for example, as subroutines that can only
compute their outputs given their inputs. Navinchandra, et
al's work is closest to that discussed in this paper.
Whereas they concentrate on unidirectional constraints, we
concentrate on flexible changes in the dependency structure,
incremental addition and deletion of constraints, and
reducing the dimensionality of the simultaneous equation
set to the smallest possible degree in order to have the best
chance in solving the constraint network.

Each of Ward[1989], Wilhelm[1991], and Navinchandra, et
al[1992] indicate that the basic ideas of constraint
management can be traced to Sutherland[1963]. In fact, the
CAD arena is a big driver in this research area.
Barford[1987], for example, investigates the construction of
systems that can solve constraints associated with solid
modelers very fast, so that the designer can get real time
feedback on the structure he is designing as he changes
certain dimensions. Cognition, Corp. has taken this one
step further by developing an integrated system that allows
conceptual drafting (using variational geometry) together
with mathematical modeling. The constraint engine they
use for the geometric reasoning is the same one they use
for the algebraic reasoning. Their system is quite
sophisticated, allowing for general plotting and table
generation. They, too, allow for incremental
addition/deletion of constraints, and user changeability of
which variables are independent and which are derived.
However, the ability of the system to decompose complex
systems of equations appears to be limited.

IV. A More Complete Example

Let us now consider a slightly more complex example.
We take this from Raymer[1989]. He presents a
conceptual design example for a single-seat aerobatic light
plane. The initial problem is to size the aircraft using
constraints on takeoff distance, climb rate, turn rate, cruise
speed, range, and so forth. The specific design goals are:

Vmax ≥ 130 kts, Vstall ≤ 50 kts
Takeoff ≤ 1000 ft over 50 ft
Rate of Climb ≥ 1500 ft/min
Cruise Range 280 naut. miles
Vcruise = 115 kts
Wcrew = 200 lbs
Turn Rate ≥ 30 deg/sec

The set of constraints that relate performance parameters,
mission requirements, and airplane characteristics can be
divided into three types of equations:

• historical correlations
• definitional constraints
• simple physical models

For example, the weight balance equations typically
include a historical correlation which relates the empty
weight fraction to parameters such as aspect ratio, wing
loading, power loading, etc. Raymer[1989] uses the
following for the initial sizing effort in the current
example:

We/Wo = FA * 0.59 * Woa1 * Aa2 * (hp/Wo)a3 *
(Wo/Sred)a4 * (1.151*Vmax)a5

where

Wo Gross takeoff weight lbs
We empty weight lbs
hp engine horsepower hp
Sref wing area ft2

Vmax maximum velocity knots
FA adjustment factor -

(FA is an adjustment factor to account for differences
between aerobatic flying and cruising.)

An example of a definitional constraint is that the gross
takeoff weight is the sum of its parts:

Wo = Wcrew + Wpay + Wfuel + We,

where Wcrew, Wpay, Wfuel are the crew, payload and fuel
weights respectively.

Simple approximations based on mechanistic models are
also used. Thus, we have the range equation:

Wec/Walt =
Exp[- 6076*R*cbhp/3600)/(550*etap*(L/D)cr)]

where R is the range, cbhp is a fuel efficiency factor, etap
is a propeller efficiency, (L/D)cr is the lift-to-drag ratio
during cruise conditions, Wec is the weight at the end of
the mission, and Walt is the weight at altitude, just after
takeoff. (See mission profile in figure below.)

Wo WLO

Walt
Wec

Wx

R

Figure IV.1 Mission profile for small plane sizing problem.

10

W
o
 = 1214 lbs

W
f
 = 112 lbs

D
cruise = 120 lb

(L/D)
cruise

 = 9.7

V
stall

 = 44.3 kts

V
climb-vertical

 = 2272 ft/min

Takeoff parameter = 81
 (must be ≤ 120 to satisfy
 1000ft takeoff reqmnt).
• • •

A = 6

Vmax =115 kts

Wing-
Loading = 8

Power-
Loading = 10
lb/hp

Wpay = 0 lb

Wcrew = 200 lb

R = 280 nm

Vcruise = 115 kts

hcruise = 8000 ft

FA = 1.37

Constraint
Network

Figure IV.2 Base Design Case for Light Plane Sizing
example. The constraint network involves 93
constraints among 110 variable. The solution
process decomposes this network into two strong
components, one of size 16, the other of size 5. The
remaining 72 equations all have symbolic solutions,
and are solved serially, one at a time.

Variation of Wo, Wf, and We with
aspect ratio and power loading

Gross takeoff
weight of 1214
lbs

Figure IV.3 Screen display for small aircraft sizing problem. Equations are shown in lower left in a scrollable window.
Variables are shown on right, again in a scrollable window. The user has just asked for a table producing gross take off
weight, weight of fuel, and empty weight as a function of aspect ratio and hp/Wo.

The basic set of equations for each operating constraint are
derived by relating the lift, thrust, weight, and drag of the
aircraft in the different operating regimes. The equations
for these factors at a given operating condition, indicated by
the subscript oc, are:

Doc = qoc * Sref *CDoc

Loc = qoc * Sref * CLoc

CDoc = CDo + K * CLoc2

ρoc = ρsealevel + drhodh * hoc

sigmaoc = ρoc/ρsealevel

qoc = 1/2 * ρoc * (1.689*Voc)2

Toc = 550*etap*hpoc/(Voc*1.689)

hpoc ≤ hpsealevel * [sigmaoc -
 (1 - sigmaoc)/7.55]

where D is the drag, L the lift, CL and CD the lift and drag
coefficients, h is the altitude, drhodh is the change in
density with respect to altitude, and T the thrust.

When the operating condition is cruise, for example, we
have Lcruise = Wcruise = Walt, and Dcruise = Tcruise. For
climbing at an angle γclimb, we have

Wclimb = Walt

Tclimb = Dclimb + Wclimb * Sin[γclimb]

Lclimb = Wclimb * Cos[γclimb].

Design Sheet accepts the equations in the form above and
uses them to derive the consequences of various

constraints. The entire constraint graph involves some 93
equations among 110 variables. We do not show this
network in a figure; it is too complicated. Happily,
Design Sheet had little difficulty in solving the system.
The base design case is shown in Figure IV.2

A screen snapshot of this situation is shown in Figure
IV.3. The layout is different than that shown in Section II
ad was chosen to allow for maximum viewing of the
variable table. The user has multiple layout choices
available to him in Design Sheet.

11

For the base design case, we have chosen the following set
of variables to be independent:

Design
Sheet

Variable

Definition Units Ini-
tial

Value
A aspect ratio - 6
R range nautic

al
miles

280

Inverse
Woovhp

ratio of hp at sea level
to gross takeoff weight

hp/lb 0.1

Wing
Loading
takeoff

Gross takeoff weight,
Wo, divided by wing
reference area, Wo/Sref

lb/ft2 8

Wcrew crew weight lb 200
Wpay payload lb 0

Vcruise cruise velocity knots 115
hcruise elevation at cruise ft 8000
hstall elevation at which to

compute stall
ft 0

hturn elevation at which to
compute turn constraint

ft 0

htakeoff elevation of airport at
which takeof f i s
computed

ft 0

hclimb elevation at which to
compute climb

ft 0

CLmax max lift coefficient - 1.2
Vmax m a x i m u m d e s i g n

velocity
knots 130

Vturn veloci ty at which
sustained turn constraint
is computed

knots 100

Vclimb speed at which to
c o m p u t e c l i m b
constraints

knots 70

FA adjustment factor to
weight equations to
account for difference
be tween ae roba t i c
flying and cruising

- 1.37

Table IV.1 Independent variables for light plane sizing
example.

For this independence set and initial settings of the
variables, Design Sheet computes the gross takeoff weight
as 1214 lbs.

Basically, this set of 93 equations breaks down into one
strong component of 16 variables involving the weight
equations and cruise conditions (to get the lift to drag ratio
for cruise conditions), another strong component of 5
equations involving climb constraints, and 72 single
equations that can be solved serially. Each of the strong
components has a single decomposing variable, and so can
be reduced to numerically solving one equation in one
unknown.

We note that for the current setting of the independent
variables, all inequality constraints are satisfied. The
contour plotting capability in Design Sheet allows the user
to display these inequality constraint regions which define
feasible design space. The boundaries of the feasible region
are displayed on the contour plot along with the level

curves of the dependent variable being studied. Consider
Figure IV.4, for example. There the system is plotting
level contours of gross takeoff weight as a function of
power loading and wing loading. The boundaries of the
inequality constraint regions are displayed as cross hatched
lines. The user can select which constraints to show. This
display follows the "sizing matrix plot" form described in
Raymer[1989].

Wing Loading, W0/Sref
In

ve
rs

e
P

ow
er

Lo
ad

in
g,

 h
p/

W
o

Stall < 50 Knots

Cruise at 80%
horsepower

Turn at 30
degrees/sec

Climb at 1500
ft/min at 70 knots

Takeoff within
1000 ft

Base
Case

Figure IV.4 Trade study showing constant contours of gross
takeoff weight as a function of wing loading and
power loading. The boundaries or various
constraints are superimposed on this plot. Thus,
only planes to the left of the vertical line at a wing
loading near 10 have a stall speed less than 50 knots,
for example.

As an example of changing the dependency structure in the
model, again consider Figure IV.4. We see that for this
case, the climb constraint and the takeoff constraint would
be active at the minimum gross takeoff weight. We may
want to run a constrained optimization at this point.
Alternatively, we may just want to specify that these two
constraints are exactly satisfied and see what the takeoff
weight is. We see from Figure IV.2 (or, if you have good
eyes from Figure IV.3) that the vertical climb rate,
Vvertftpermin, is currently 2272 ft/min and that the takeoff
parameter is 81. We can try to adjust by hand the wing
loading variable (WingLoadingtakeoff) and the inverse
power loading variable (InverseWoovhp) until vertical
climb is exactly 1500 ft/min and the takeoff parameter is
exactly 120. (The takeoff parameter should equal 120 for
the aircraft to clear 50 feet elevation within 1000 feet.)
Alternatively, we can easily change the dependency
structure to make the takeoff parameter and the vertical
climb rate the independent parameters. We do this by first
changing the wing loading variable and the inverse power
loading variable to undetermined. This makes the vertical
climb rate and the takeoff parameter undetermined. The
user can now make these independent. Once he does so, he
is free to specify their values. We show this case in Figure
IV.5. We see that the gross takeoff weight is 1082 lbs.
We also show the results of a small trade study in that
figure, where we have varied the aspect ratio. Interestingly,
in this case the 93 equations broke down into one strong

12

Effect of aspect ratio on
gross takeoff weight and
stall speed

Independent

Gross Take-off
Weight = 1082

Figure IV.5 Small aircraft sizing problem with vertical climb rate and take-off parameter as independent rather than wing loading
and hp/Wo. The user has specified a vertical climb rate of 1500 ft/min and a take-off parameter of 120 (corresponding to
taking off in 1000 ft and clearing 50 ft elevation). The resulting take-off weight is 1082 lbs. A small trade study,
varying aspect ratio, is shown in the pane at the left-middle.

component of 36 equations, with the remainder being
solvable serially. The strong component required two
decomposing variables, implying that the problem of
solving the 93 equations was reduced to solving a non-
linear system of two equations in two unknowns, and 91
single equations.

As mentioned in previous sections, Design Sheet has the
capability of computing sensitivity derivatives and of
propagating errors through the constraint network. It is
interesting to demonstrate this capability for the light
airplane sizing example. For the base case considered, we
have the following sensitivity derivatives produced by
Design Sheet:

Independent Variable, x ∂Wo/∂x

A 24.8
R 0.964

InverseWoovhp 3724.
WingLoadingtakeoff -47.6

Wcrew 4.21
Wpay 4.21

Vcruise 3.39
hcruise -0.0066
hstall 0

hturn 0

htakeoff 0

hclimb 0

CLmax 0

Vmax 4.86

Vturn 0

Vclimb 0

FA 2718

The zeros in this table reflect that fact that these
independent variables played no rule in defining the actual
gross takeoff weight (when wing loading and power loading
are specified). The large factors are power loading
(InverseWoovhp = hp/Wo) and the weight adjustment
factor, FA. The later was chosen by Raymer in his
example as 1.37 to adjust the weight equation to account
for differences between aerobatic flying and cruising. It
turns out that small errors in this factor are amplified in the
initial weight determination, using the given historical
correlations. Assuming a standard error of 0.1 in this
factor, and no errors in the other independent variables,
Design Sheet computes a standard error of 271.8 lbs for
Wo. See Figure IV.6.

 V. Conclusions

The name "Design Sheet" was chosen to emphasize the
similarity between this tool and ordinary spreadsheets.
However, Design Sheet differs considerably form typical
spreadsheets. These differences are summarized in the
Table II.1. The most significant distinction is that the user
is freed from having to determine the computational
sequence of operations to obtain values of his output
variables given values of his input variables. Importantly,
the technology to free him from this burden computes the
relationships so fast that it can be done interactively. This
also allows the designer to change which variables he
wants to consider as inputs to his model and which he
wants to consider as outputs, thus greatly increasing his
flexibility in performing trade studies and in investigating
different regions of the design space. This new capability
permits the designer to explore many design options that
previously could not be explored due to the time and cost

13

A Vmax Wing- Power- Wpay Wcrew R Vcruise hcruise FA
loading loading

Sensitivity
Network

A Vmax Wing- Power- Wpay Wcrew R Vcruise hcruise FA

loading loading

∂Wo/∂A ∂Wf/∂A ∂Dcruise/∂A ∂(L/D)cruise/∂A ∂Vstall/∂A •••
∂Wo/∂Vmax ∂Wf/∂Vmax •••
•••

Wo Wf Dcruise (L/D)cruise Vstall hpsealevel hpturn •••

Constraint
Network

Figure IV.6 Design Sheet can use its knowledge of the
constraint network to construct a sensitivity
network. This latter network involves a set of linear
equations for the derivatives. These derivatives can
then be used to propagate errors through the network.
Thus,

σ2
Wo = (∂Wo/∂A)2σ2

A + ... + (∂Wo/∂FA)2σ2
FA.

In the example shown, the standard error of the
weight adjustment, FA , factor is amplified from
below ten percent of FA to more than twenty percent
of Wo. (FA = 1.37±0.1 => Wo = 1214±272)

associated with developing the necessary analysis software.
The ability to easily perform sensitivity analysis early in
the design process should result in future designs that are
more robust with respect to uncontrollable variations in
both the manufacturing process and in use. While Design
Sheet is still in development, it has been tried on problems
involving more than 100 variables with excellent response
times.

References

Barford. Lee Alton [1987], "A Graphical, Language-Based
Editor for Generic Solid Models Represented by
Constraints," PhD dissertation, Cornell University.
Report MRC-TM-87-02, Hewlett-Packard Laboratories,
Palo Alto, CA 94304-1317.

Bouchard, E.E., G.H. Kidwall, and J. Edward Rogan,
[1988], " The Application of Artificial Intelligence
Technology to Aeronautical System Design," AIAA-88-
4426, Presented at the AIAA Aircraft Design Systems and

Operations Meeting, September 7-9, 1988, Atlanta,
Georgia.

Cognition, Corporation, [1990], "Mechanical Advantage,"
software description manual, 755 Middlesex Turnpike,
Billerica, MA 01821.1990.

Fertig, Kenneth W. and David E. Smith, "Design Sheet:
An Engineers Spreadsheet," Rockwell Palo Alto
Laboratory Technical Report, December, 1991.

Fertig, Kenneth W. and David E. Smith, "Using Graph
Theory and Intelligent Search on Systems of Non-Linear
Equations," Rockwell Palo Alto Laboratory Technical
Report, in preparation.

King, Bob. 1989, Better Designs in Half the Time,
GOAL/QPC, Methuen, MA.

Hauser, John R. and Don Clausing. 1988. "The House of
Quality," Harvard Business Review, Vo. 66, No. 3, p. 63.

Stubblefield, P., K.W. Fertig, and D. E. Smith, "Design
Sheet, A Users Manual," Rockwell Palo Alto Laboratory
Technical Report, in preparation.

National Materials Advisory Board. 1991, NMAB-455,
Enabling Technologies for Unified Life-Cycle Engineering
of Structural Components, National Academy Press,
Washington, D.C.

D. Navinchandra, Mark S. Fox, Eric S. Gardener, "On the
Role of Constraints in Concurrent Design," to appear in
Journal of the Institute of Industrial Engineering, 1992.

Raymer, Daniel P., [1989], Aircraft Design: A Conceptual
Approach, AIAA Education Series, J.S. Przemieniecki,
Editor-in-Chief, American Institute of Aeronautics and
Astronautics, Inc., Washington.

Serrano, David [1987], "Constraint Management in
Conceptual Design," PhD Dissertation, Massachusetts
Institute of Technology, Dept. of Mechanical Engineering,
October, 1987.

Sutherland, I. E., [1963], "Sketchpad - A Man-Machine
Graphical Communication System," Technical Report
#296, MIT Lincoln Lab., Cambridge, Massachusetts.

Ward, Allen Corlies, [1989], "A Theory of Quantitative
Inference for Artifact Sets, Applied to a Mechanical Design
Compiler," PhD dissertation, Massachusetts Institute of
Technology, Dept. of Mechanical Engineering, January,
1989.

Wilhelm, Robert G., [1991], "Computer Methods for
Tolerance Synthesis," PhD dissertation, Mechanical
Engineering, University of Illinois at Urbane-Champagne.

